The internal economics of a popular Minecraft server

Alice Maz Minecraft above cityAlice Maz writes about how she mastered the economics of Minecraft:

I started on my server with only a rudimentary knowledge of the game itself and ipso facto zero understanding of its economy. Within six months or so, I had perhaps as detailed a mental model of it as one could get. I knew the price ranges of most of the items in the game and everything that all of them were used for. I knew how common they were on the market, who the major sellers were, what their supply chains looked like. I knew how fast they sold through, whether the price was stable or tacking a certain way, and I had tons of theories on ways to play all this to get what I needed and turn a profit while doing it, and nearly all of them were sound. Most of it I didn’t even think about. I didn’t need to contemplate why, for instance, lumber was both cheaper and more common than it should be, such that I could buy it all and hold, force the price up, corner the market, and keep it that way. I just kind of… knew, and did it. It’s a wonderful feeling, weaving a system into your mind so tight that it’s hard to find the stitches after awhile. Highly recommended.


Via Boing Boing:

Alice Maz was part of a small group of players who came to have near-total mastery over the internal economy of a popular Minecraft; Maz describes how her early fascination with the mechanics of complex multiplayer games carried over into an interest in economics and games, and that let her become a virtuoso player, and brilliant thinker, about games and economics.

Maz’s long, fascinating essay about her business ventures in Minecraft are a potted lesson in economics, one that shows where financial engineering actually does something useful (providing liquidity, matching supply and demand) and the places where it becomes nothing more than a predatory drag on the “real economy” of people making amazing things in Minecraft.

[The internal economics of a popular Minecraft server are an object lesson in everything great and terrible about markets]

Carrion: you are the alien blob monster

This looks like fun: in Carrion, you play an alien blob monster, hunting and devouring humans in a failing space colony.

Via Boing Boing:

In most examples of sci-fi horror, a desperate human protagonist must evade, hunt and vanquish the unspeakable alien creature. But what if you were a horrific amorphous nightmare blob, crawling around the red-cast darkness of a failing space colony in search of prey to devour?

This is the premise of Sebastian Krośkiewicz’s “Carrion”, and it looks amazing. Part John Carpenter’s Katamari Damacy, part Shoggoth simulator, all gore, the prototype animations depict a claustrophobic industrial scenario with our hero sliming and slorping around its terrified human victims.

It’s early days, by the looks of it …

See Sebastian Krośkiewicz’s Twitter page.

Algorithm Writes “Artspeak”

This has a playful spirit which may be of interest to game designers:

Istanbul-based artist Selçuk Artut has created a machine-learning algorithm which generates “Artspeak” — synthetic artist statements.

Molly Gottschalk has written an article about Artut. Excerpt:

The project has its roots in 2013, when Artut was writing his Ph.D. dissertation on the philosophies of Martin Heidegger, and found himself struggling to get through the philosopher’s difficult 1927 magnum opus, Being and Time. (One Amazon reviewer describes the book as ideas “buried beneath an impenetrable barrier of incomprehensible jargon.”)

But it wasn’t until this past summer when Artut, who often uses coding as a tool for his artistic practice, took online courses on machine learning and machine intelligence from Stanford University and became inspired to apply the technology to his work. He would, he decided, “teach the machine to think like Heidegger.”

Artut trained a computer with the text from Being and Time. The resulting algorithm formulates Heidegger’s words and ontological paradigms into three-sentence-long statements that sound all too similar to art world gibberish.


* This New Algorithm Writes Perfect “Artspeak” By Molly Gottschalk

Epic Games is suing me, says Caleb Rogers

Via Boing Boing: “Epic Games is suing a 14 year old for making a cheat tutorial and his brilliant mother is PISSED“:

Epic Games makes the wildly successful multiplayer free-to-play game Fortnite, which is the locus of a pitched battle between players and publisher over game-mods, especially cheat-hacks that give unfair advantage to some players.

A 14 year old boy named Caleb “Sky Orbit” Rogers made a video in which he demonstrated the use of one of these hacks. In response, the company sent Youtube a heavy-handed copyright takedown, claiming that capturing incidental footage of gameplay was a copyright violation, and that demonstrating the functionality of one of these aftermarket add-ons is also a copyright violation.

Then Caleb Rogers correctly asserted that there was no copyright infringement here….

When Caleb Rogers filed a put-back notice with Youtube that reinstated his video, Epic responded by filing a lawsuit against him, repeating the incorrect claim that Rogers’ video was a copyright infringing derivative work, and claiming that Rogers had formed, and then breached, a contract with Epic by playing their game and then talking about how to cheat in it.

In response, Rogers’ mother, Lauren Rogers, has filed an outstanding memo with the court explaining some of the problems with Epic’s suit….

Epic has claimed that after Caleb Rogers filed his put-back notice on Youtube, they were obliged to sue him, or they’d lose the right to sue other people who did the same thing. This is wrong….

Caleb Rogers did some obnoxious things: cheating, boasting about cheating, then making a video about his takedown in which he said intemperate things about companies.

But you know what’s more obnoxious that 14 year old cheaters? Corporations staffed by grown-ass humans who file lawsuits against 14 year olds that advance absurd theories about copyright, infringement, fair use, contracts, and EULAs. If Epic wins its suit, the precedent it sets will not be limited to corporations who are upset about obnoxious teens — it will establish that capturing incidental footage of games (the heart of Let’s Play videos and innumerable other forms of online communication, criticism and analysis) is a copyright infringement if you hurt some corporate overlord’s feelings in the process.

Caleb’s video: “Epic Games is Suing Me”:

Stone Story RPG uses text-based animation

Stone Story is an RPG with clever text-based ascii animations, combining old-school visual style with current-day gameplay.

From the developer:

Stone Story is an RPG set in a dark and vile world. The game’s fluid ASCII art is painstakingly animated in plain text by a single insane game developer. Currently in closed alpha, the game features 6 locations to explore, 4 boss fights, mind-blowing ASCII cutscenes and plenty of loot to discover. Much more content is planned once the project reaches beta.

The casual play contrasts with the retro visuals, providing a unique experience that blends nostalgia with modern design principles. One of the game’s defining mechanics is that you have no direct control of the player character. You choose what items to equip and which locations to visit, while an artificial intelligence does all the exploring, combat and looting. An expansive item crafting system allows you to combine otherwise disposable items–rewarding experimentation and making full use of all the gathered loot.

Via Boing Boing: New role playing game has clever text-based ascii animation.

Stone Story: whirlwind wand

Generating fantasy maps

Martin O’Leary has created an excellent Fantasy Map Generator — and shared the source code!

I wanted to make maps that look like something you’d find at the back of one of the cheap paperback fantasy novels of my youth. I always had a fascination with these imagined worlds, which were often much more interesting than whatever luke-warm sub-Tolkien tale they were attached to.

At the same time, I wanted to play with terrain generation with a physical basis. There are loads of articles on the internet which describe terrain generation, and they almost all use some variation on a fractal noise approach, either directly (by adding layers of noise functions), or indirectly (e.g. through midpoint displacement). These methods produce lots of fine detail, but the large-scale structure always looks a bit off. Features are attached in random ways, with no thought to the processes which form landscapes. I wanted to try something a little bit different.

There are a few different stages to the generator. First we build up a height-map of the terrain, and do things like routing water flow over the surface. Then we can render the ‘physical’ portion of the map. Finally we can place cities and ‘regions’ on the map, and place their labels.

O’Leary does a first-rate job of explaining the process in clear and comprehensive terms. Best of all, he has provided a series of interactive examples, which are both fun and instructive.

Via Boing Boing:


I have not played Hook, but it looks interesting:


Via Rock Paper Shotgun:

The idea is that each level gives you this abstracted circuit board-looking diagram. There are lines and connecting points and overlapping straight and hooked pins. When you press the big black circles they activate the circuit board and retract any of the pins which are connected at the time. The catch is that the pins are layered so trying to activate them out of order will mean tugging ineffectually at pins whose removal is blocked by others.

I’d describe it as zen circuit board kerplunk and across the fifty levels I’ve played I sort of zone out, concentrating on lines and connections. You can try to remove multiple pins with a button press if you’re feeling flash or you can go one by one. The more you solve the clearer the board gets as extraneous circuitry is removed. I’ve only had one situation where I’d made the puzzle impossible by removing something vital to another circuit.

Creating bacterial ‘fight clubs’ to discover new drugs

“Creating bacterial “fight clubs” is an effective way to find new drugs from natural sources.”

Bacteria Fight ClubThat is the conclusion of a team of Vanderbilt chemists who have been exploring ways to get bacteria to produce biologically active chemicals which they normally hold in reserve. These compounds are called secondary metabolites. They are designed to protect their bacterial host and attack its enemies, so they often have the right kind of activity to serve as the basis for effective new drugs.

… the “fight club” approach [analyzes] what happens when microbes compete.

… This procedure allowed the chemists to discover a new member of a class of biomolecules with broad-ranging activity ….


Via Slashdot.

This could be modeled as a game, either for pure entertainment — fight, bacteria, fight! — or as an aid to research (with bacteria fights!).

Verigames: verify software by playing games

VerigamesPlay games to help defend — or at least debug — your nation.

Formal Verification is the process of rigorously analyzing software to detect flaws that make programs vulnerable to exploitation. Performing this analysis requires highly skilled engineers with extensive training and experience. This makes the verification process costly and relatively slow.

The Defense Advanced Research Projects Agency (DARPA) Crowd Sourced Formal Verification (CSFV) program is interested in improving and advancing the current processes of formal verification by significantly increasing the number of people working on formal verification projects at any given time through crowd-sourcing. CSFV augments the intensive work done by formal verification experts by greatly decreasing the skill required to do formal verification.

Much of the work required in the process of formal verification can be automated. Computers can be programmed to automatically scour software applications and verify the absence of certain bugs that make the applications vulnerable to misuse. However, certain formal verification work needs to be done by human experts specifically trained to discover and address issues that can be missed by computers. However, there aren’t enough of these experts to cover the huge amount of software generated in today’s modern computing world.

CSFV seeks to add more human expertise to the process of formal verification through fun and engaging video games. The games are created to assist in the formal verification process as players solve puzzles and increase their score. Video games that represent the underlying mathematical concepts allow more people to perform verification analysis of software efficiently. We empower non-experts to effectively do the work of formal verification experts—simply by playing and completing game objectives.

[Verigames: About Us]

Verigames YouTube channel

DARPA press release (December 4, 2013)

Via NetworkWorld, via Slashdot.

Example: Xylem

Xylem is a Verigame game which happens to have a nice YouTube video:

Software developers across the world have a major problem producing bug-free reliable code.

Our task is to help the specialists achieve their goal of ensuring that software that is produced is bug-free.

The way we do it is to take that code and turn it into some puzzles and put them in a game that we called Xylem, and crowdsource the games and the results of the game play help us to produce code that is bug-free.

What next?

This is all very interesting, but doesn’t go deep enough.

I want to know more about the principles of how we “take that code and turn it into some puzzles”.